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Motivation

* Unsteady separated flows and recirculation regions occur on
airfoils and blades for a wide range of Reynolds numbers
from 0(10%) to 0(10°)

U e [MVS]
D 135 17 205 24 275 31 MU

1 4.5 38 415 45

-0.2

Y€ an

0.4

-0.6

Nyl by of.
04 0z 0 02 04 06 03

Flow over airfoil with flap [1] Flow through diffuser [2] Flow over wind turbine blade [3]

[1] Petz, R., & Nitsche, W. (2007). Active separation control on the flap of a two-dimensional generic high-lift

configuration. Journal of Aircraft, 44(3), 865-874.
[2] Dandois, J., Garnier, E., & Sagaut, P. (2007). Numerical simulation of active separation control by a synthetic jet.

Journal of Fluid Mechanics, 574, 25-58.
[3] Sezer-Uzol, N., & Long, L. N. (2006). 3-D time-accurate CFD simulations of wind turbine rotor flow fields. 44th AIAA

Aerospace Sciences Meeting and Exhibit, January 2006, Reno, Nevada.



Research Goals

* Create predictive simulation tool for unsteady
separated flows that is:

* High-fidelity, turbulence-resolving
* Tractable for high Reynolds number flows

* To enable:
* Optimization of wing, blade, flap design
* Rapid testing of active flow control strategies
» Acoustic noise predictions at flight conditions



Integral Wall Model (iWMLES)

Use von-Karman-Paulhausen’s integral method:
Assume velocity profile & integrate BL egn analytically
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Integral Wall Model (iWMLES)

Solve for 6 parameters to satisfy 6 constraints (for x):
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Numerical Methods

ViCar3D
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* Dynamic Vreman model
for subgrid-scale stress
term in LES equations

* Recycle-rescale method of
Lund et al. for developing
turbulent boundary layer




IWMLES Validation
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Specific Objectives

 Demonstrate that iIWMLES can predict turbulent
separation and reattachment

* turbulent separation bubble over a flat plate

 Validate integral Wall Model (iWMLES) for
separated flows at high Re against wall-resolved
LES
* Create benchmark wall-resolved LES
* For the same grid except near wall, compare Cf, Cp



Setup: Turbulent Separation Bubble

Flow over flat plate with suction boundary condition
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separation and reattachment over a range of Reynolds numbers. Center for Turbulence Research Annual
Research Briefs, 143. J



Results: Turbulent Separation Bubble

Instantaneous iso-surfaces of Q-criterion colored by U
—
iWMLES: —

Reg, = 985, Axg = 40,Ays ~ 16, AS ~ 65,Azf = 14
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Results: Turbulent Separation Bubble

Mean U Velocitv
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*Abe, H., Mizobuchi, Y., Matsuo, Y., & Spalart, P. (2012). DNS and modeling of a turbulent boundary layer
with separation and reattachment over a range of Reynolds numbers. Center for Turbulence Research Annual 11

Research Briefs, 143.



Results: Turbulent Separation Bubble

Turbulent kinetic energy
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with separation and reattachment over a range of Reynolds numbers. Center for Turbulence Research Annual 12
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Results: Turbulent Separation Bubble

Coefficient of pressure  Coefficient of friction
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Results: Turbulent Separation Bubble

Coefficient of friction
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Inlet friction velocity mismatch:
effective Reynolds number from

recycle-rescale method (Lund et
al) in iIWMLES is higher than DNS*
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*Abe, H., Mizobuchi, Y., Matsuo, Y., & Spalart, P. (2012). DNS and modeling of a turbulent boundary layer
with separation and reattachment over a range of Reynolds numbers. Center for Turbulence Research Annual
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Setup: Wall-resolved LES Benchmark

Flow over flat plate with suction boundary condition

y

y
N0 O N DM

Recycle Rescale plane at x =60

No vorticity BC
Res = 7703, Re, = 353 Suction Profile:
Domain size: 60 x 6 x4 0 V_=0.5U,
Resolution: 512 x 128 x 96 L=4568,x.=326
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Setup: Wall-resolved LES Benchmark

Wall-resolved LES vs iWMLES Resolution
s iwmiEs

N, X N,, X N, 512 X 128 X 96 512 X 96 X 96
Ax/S6,  Ax™ 0.117, 44 0.117, 44
Az/§, Azt 0.042, 15 0.042, 15
Ay/s,  Ay” 0.0014, <1 0.0625, 16
[ Ay g - 0.15, ~75J

7

\
A, ~ 3 Ay(y = 0) to avoid feeding the WM
the LES under-resolution error in near-wall
end to eliminate log-layer mismatch*
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*Larsson, J. et al (2016). “Large eddy simulation with modeled wall-stress:
recent progress and future directions”, Mechanical Engineering Reviews, 3:1. 16



Results: IWMLES vs Wall-resolved LES

Instantaneous iso-surfaces of Q-criterion colored by U

Wall-resolved LES, when suction is first turned on
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Results: IWMLES vs Wall-resolved LES

Instantaneous iso-surfaces of Q-criterion colored by U

IWMLES, after separation bubble is well established
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Results: IWMLES vs Wall-resolved LES

Mean U velocity
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Results: IWMLES vs Wall-resolved LES

Mean turbulent kinetic energ
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Results: IWMLES vs Wall-resolved LES
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Inlet friction velocity mismatch:
effective Reynolds number from recycle-
rescale method (Lund et al) in wall-
resolved LES is higher than iWMLES
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Conclusions

* Proposed a low-cost non-equilibrium integral Wall
Model for LES (iWMLES)

e Validated iWMLES for canonical turbulent BL

* Demonstrated iIWMLES capability to predict separation,
and reattachment for a turbulent separation bubble
flow = compared favorably with DNS despite inflow
mismatch

e Showed preliminary, but promising comparison of
IWMLES to wall-resolved LES for a turbulent separating
and reattaching boundary layer
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Outlook

* Ongoing: validation of turbulent recirculation zone
over flat plate
* Address inflow mismatch problem

* Next: perform validation for turbulent flow over
airfoil against experimental data

e Future: use iWMLES to investigate active flow
control to reattach flow over wing-flap or tail-
rudder at operating Reynolds number

23



Thank You

Questions?

Know someone who might be interested in continuing this work?

Please let them know that Rajat Mittal (mittal@jhu.edu) & Charles
Meneveau (meneveau@jhu.edu) are looking for a postdoc
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Why Wall-Modeled LES?

Wall-resolved LES:

e Can capture mean flow,
Cp, Cf, and Reynolds stress
accurately at resolutions
on the order of 1% of DNS

* Largely insensitive to
1 days choice of subgrid-scale
model

108 1000 days

10 days

CPU Seconds

e # of points resolve viscous
sublayer:

* For Re>10°, >90% of grid
points are used in <10% of
Re the simulation domain
X (near boundaries)

A 4

103 10° 10’ 10°

Piomelli, U. (2008), “Wall-layer models for
large-eddy simulations”, Progress in
Aerospace Sciences 44, 437. 25



Results: IWMLES vs wall-resolved LES

iIWMLES Influence of non-equilibrium terms
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Results: IWMLES vs Wall-resolved LES

Wall-resolved LES (lines) vs iWMLES (dashes)
AyT+ ~1 AyT+ ~ 16, AdyT+ ~100
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Why not RANS or Hybrid RANS-LES?

RANS limitations:

* Length/intensity of recirculation strongly depends on turbulence model

* requires resolving inner viscous layer (yf+ Sl)
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FIGURE 9. Model performance for C'y and Cp at Reg = 300: (a) C'¢ ; (b) Cp. ———, DNS; ——,

k-g3 ===, k-w; —+——, SST.

Abe, H., Mizobuchi, Y., Matsuo, Y., & Spalart, P. (2012). DNS and modeling of a turbulent boundary layer with
separation and reattachment over a range of Reynolds numbers. Center for Turbulence Research Annual

Research Briefs, 143. 28



Why Wall-Modeled LES?

Estimates for Canonical Turbulent Boundary Layer

| Res10° | Rez=10"
Wall Resolved LES 8.7x10’ 1.4x1010
Hybrid RANS-LES 1.4x107 2.0x107

Integral Wall Model LES* 3.0x10° 3.0x10°

Estimated # of grid points in the boundary layer region
for different methods and Reynolds numbers.

*Yang, X.l.A., Sadique, J., Mittal, R. & Meneveau, C. (2015), “Integral Wall
Model for Large Eddy Simulations of wall-bounded turbulent flows”. Phys.

Fluids 27, 025112. .



What is wall-modeled LES?
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Integral Wall Model (iWMLES)

Filter velocities in time to match near wall time scale

Q/ where 7Uwall=Aly /xuit
d, |

—> Obtain RANS like equations for (ud7) with viz=um |0(0) /3y |

- Vertically integrate equations from 0 to AJy

—> Solve for ziw using a parametric velocity profile
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LES Wall-modeling approaches
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Results: Turbulent Separation Bubble

Reynolds stress <u’v’>
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*Abe, H., Mizobuchi, Y., Matsuo, Y., & Spalart, P. (2012). DNS and modeling of a turbulent boundary layer
with separation and reattachment over a range of Reynolds numbers. Center for Turbulence Research Annual 33

Research Briefs, 143.



Results: IWMLES vs Wall-resolved LES

Me;m ngnqlds stress:
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